Supplementary Information for
‘Stochastic gradient descent-based
inference for dynamic network models
with attractors’

Hancong Pan
Department of Mathematics and Statistics, Boston University
and
Xiaojing Zhu
Department of Mathematics and Statistics, Boston University
and
Cantay Caliskan
Goergen Institute for Data Science, University of Rochester
and
Dino P. Christenson
Department of Political Science, Washington University in St.
Louis
and
Konstantinos Spiliopoulos
Department of Mathematics and Statistics, Boston University
and
Dylan Walker
Argyros School of Business and Economics, Chapman
University
and
Eric D. Kolaczyk



Department of Mathematics and Statistics, McGill University
E-mail: eric.kolaczyk@mcgill.ca

December 13, 2024



This supplementary document is organized as follows. In Section 1 we
present the proofs of the theoretical results that appear in the main body
of the paper. In Section 2 we present some additional statistical tests and
diagnostics to back up the validity of the numerical results reported in the
main body of the paper. In Section 3, we provide implementation details
for the algorithm. In Section 4, we compare computational times among
MCMC and the newly proposed SGD-based algorithm (in both CPU and
GPU settings). We also comment upon the impact of hyper-parameters
choices on convergence times. In Section 5 we present a simulation study to
illustrate the algorithm’s robustness when nodes exit the network at different

turnaround levels.

1 Some Useful Results of Multivariate Nor-
mal Distribution

Our variance estimation method exploits the properties of the conditional dis-
tribution of a multivariate Gaussian distribution. Let x follow a multivariate
normal distribution z ~ N (i, ), and hence the conditional distribution of
a subset vector x1, given its complement vector x,, is also a multivariate
normal distribution z;|zy ~ N (f41]2, X1j2) with the conditional mean and co-
variance given by pyp = pi1 + 212355 (22 — p2) and Yp =X — 19555 Bot,
respectively. The block-wise mean and covariance matrices are defined as

p= ] and X =[5 52 ]



More specifically, the covariance of the conditional distribution Cov(z1|x2)
is a constant as a function of x,, indicating that the shape of the conditional
distribution is independent of the specific value of x,. Additionally, writ-
ing p(x1|xs) as the p.d.f of the conditional distribution of x|z, the mean
P2 = + Y1985 (22 — pto) is the median, and mode of the distribution. The
maximum of the p.d.f. function p(xy = ju2|72) is a constant as a function of
Z3.

Therefore, we can recover the shape of the marginal distribution of xs

from the joint distribution by varying x, and following the line xy = py).

Theorem 1.1. Given the multivariate Gaussian distribution setting pre-
sented above, write p(x1,xs) as the p.d.f of the joint distribution of x1,xs.

p(xz2) as the p.d.f of the marginal distribution of xo. Then, we have p(xs) o

(@1 = piaj2, T2).

In particular, the marginal distribution is proportional to the joint dis-

tribution evaluated on the curve of the conditional mean of x; given x,.

Proof. Let us explicitly state the conditional mean and covariance matrix
for our given multivariate Gaussian distribution. The conditional mean of

given o, denoted pi1p2, is:

M2 = 1 + Y1955 (T2 — fi2).

Additionally, the conditional covariance matrix, denoted 3, is described



as:

Vg = Y11 — S12555 Yot

The joint distribution, p(z1, z3), for the multivariate Gaussian is:

1 1 rec1g
plonra) = e (e w5 )

The conditional distributions p(x;|xs) is:

1 1 S )
p(x1|T2) = ———Fexp | —=(x1 — Yoolry —p .
lee) (27?)5|21|2|% ( 2( L ) 1‘2( ' i)

By the definition of conditional probabilities, we have:

p(a1, 72)

Pl) = o)

Inserting x; = )2 into this relation, we get:

p(M1\27 $2)

plwa) = p(ﬂ1\2|372> .

L and Y12 is constant as a function of x5, we

Since Ty) = -
PUnle2) = g

get that

p(xs) = Cp(ﬂuz; T3).
where C' = (27)2 %, — 21222_21221|%, a constant as a function of x,. O

Theorem 1.1 provides an expression for the shape of the marginal distribu-



tion from the joint distribution, when the joint distribution is a multivariate
normal distribution.

Next, we proceed with an important result demonstrating that for a nor-
mal distribution the ideas of Theorem 1.1 yield a formula for the variance
of x5 that we can then be turned into a practical SGD-based algorithm for
uncertainty quantification. In particular, recall that in a univariate normal
distribution, two key parameters - the mean and variance - describe the dis-
tribution fully. By considering two distinct points from the distribution, we

can deduce these parameters.

Corollary 1.1.1. Consider the multivariate Gaussian distribution setting

presented above, and let xo be scalar. Then, for some fized To # s,

(p2 — T2) (1)

1
Var(ze) = = —
(2) 2log p(z1 = pi1, w2 = o) — log p(x1 = p1j2, T2 = 72)

Proof. Recall that the p.d.f of a univariate Gaussian distribution zo ~ N (pa, Var(zs))

_ 1 ox _(372—M2)2
plo) = e p( —M(@)). @)

is given by:

Taking the logarithm, we obtain:

(.%'2 - /~L2>2 (3)

1
log p(z2) = ) log(2mVar(z3)) — War(zy)

From Theorem 1.1, we deduce that log p(x2) and log p(x1 = fi1)2, x2) differ

by a constant since p(x3) o< p(x1 = py)2, ¥2). Considering two distinct points,



To = lo and xy = Ty:

For x5 = ps:

log p(xs = 1s) = —% log (2 Var(z»)). ()

For x5 = Zo:

(i'Q - M?) (5>

. 1
log p(xe = Z9) = ~5 log(27Var(zy)) — War(zg)

Define the difference in these logarithmic probabilities as:
A =logp(r1 = p, T9 = piz) — log p(x1 = pu12, T2 = T2). (6)

Using the above, we get:

(k2 — T2)°
A=-————" 7
2Var(z,) 0

Rearranging gives:
(2 — T2)°

Var(zy) = —, (8
(z2) 2(log p(x1 = 1, w2 = pio) —logp(x1 = Hij2, T2 = 7)) ®)
completing the proof of the corollary. n

Beyond just the variance represented by the diagonal elements of the

covariance matrix, there’s also a formula for the off-diagonal elements. This



allows us to reconstruct a single column of the covariance matrix.

Corollary 1.1.2. Consider the multivariate Gaussian distribution setting

presented above. Then, for some fixed To # Lo,

by
Ty = 22

m(ﬂm - Ml)u

where [y denotes the conditional mean of x1 given Ty = I.

The methodology established for a generic normal distribution p(x1, xs) is
adapted to estimate variance in the posterior distribution 7 (:|Y"), effectively
applying the same theoretical concepts to the Bayesian analysis under a

Laplace approximation.

2 Supplementary Results in X Data Analysis

2.1 BIC values

In our analysis, we utilized the Bayesian Information Criterion (BIC) to
determine the best change-point among the competing models. For the X
platform dataset, we evaluated the BIC values for potential single change-
points from 2012 onwards, as presented in Table below. The model suggesting

a change-point in 2012 yielded the lowest BIC value.



2012 2013 2014 2015 2016 2017 2018 2019

BIC 220138 220163 220201 220189 220212 220203 220234 220224

Table 1: BIC values for competing models with different change-point for
the X platform data.

2.2 Diagnostics

Note that the variance estimation algorithm is similar to a quadratic approx-
imation to the log-posterior density. We performed diagnostics to evaluate
the assumption that the log likelihood function can be approximated by a

quadratic function in a small neighborhood centered around the mode.

2.2.1 Normality test

We rewrite equation (1) as follows:

max log7n(Z,0|Y) = maxlogn(Z,0|Y) — 17772, 9)
0:1=0; —n 61=67 2 Var(6,]Y)

and if our assumptions are correct, then Var/(01\|Y) should be a constant no

matter the choice of . We vary 7 to obtain a plot of maxg, —p: _, log 7(Z,0]Y’)

as a function of n to test whether this assumption is valid. If this assumption

holds, maxg, —g: —, log 7(Z, 0]Y") should be approximately a quadratic function
as a function of 7.

We choose 0, to be vj, and set n to be -0.03, -0.02, -0.01, 0.01, 0.02, 0.03.

In Figure 1 we plot maxg, —g:_,log7(Z,6|Y") as a function of 1 (left) and >

(right). We can see that maxg,—¢: _, log 7(Z, 0|Y") is approximately quadratic

9



as a function of n and linear as a function of n?>. The diagnostic plot does

not show evidence of violating the underlying assumptions of the variance
estimation method.

+2.2330000000e5 +2.2330000000e5
704 * * 70 '
65 6.5

60 6.0
— —
g g
Y . . 55

50 50
45 . L] 45
L ]
003 -002 -001 000 001 002 003 00000 00002 00004 00006
n

0.0008
7

(right).

Figure 1: We choose 6, to be 7§, and set n to be -0.03, -0.02, -0.01, 0.01,
0.02, 0.03. We plot maxg,—g: _,log7(Z,0|Y) as a function of n (left) and »?

2.2.2 Linearity test

From Theorem 1.1, we see that the conditional mean of X5.,|X; is linear as

a function of X; under the Gaussian assumption, i.e.,

(X | X1 = pi1 + 1) = pion + S X110

(10)
We vary 7 to obtain the slope pXjXai=p+n

: )= for each X ; with differ-

ent 1 to test whether this assumption is valid. If this assumption holds,

10



—— mean — mean
min 20 < min
10 max max

00
-5
|

-0.5
I

Slope
Slope

=101 |
I -1.0

—15 -15

o 2000 4000 G000 8000 10000 o 2000 4000 G000 8000 10000
Index Index

Figure 2: We choose 6, to be 7§, and set n to be -0.03, -0.02, -0.01, 0.01,
0.02, 0.03. We calculate i |Xl:n“ 115 for each latent position parameters
under each 7. The latent position parameters are ordered by the mean of its
slopes and plot the mean maximum and minimum of its slopes (left) and the
the slopes of 95% of the latent position parameters after removing the tail
5% that have a very large or very small slopes.

WX X1=p1+1)
n

—% should be a constant regardless the choice of 1 for each Xj.
We use the results of the previous test, set 6; to be v, and 7 to take values

in the set {—0.03, —0.02, —0.01,0.01,0.02,0.03}. We calculate “CuXi=rtni=i

for each latent position parameters and each n. In Figure 2 we order the latent
position parameters by the mean of its slopes and plot the mean maximum
and minimum of its slopes (left) and the the slopes of 95% of the latent
position parameters after removing the tail 5% that have a very large or
very small slopes. We can see that the slopes, or the correlated changes for
each latent position parameters when we change 7} are close under different

choice of 1. Therefore the diagnostic plot does not show substantial evidence

11



of violating the underlying assumptions of the variance estimation method.

3 Implementation Details

We use gradient descent with momentum and choose different learning hy-
perparameters for the latent position parameters and the global parameters.
With gradient descent, we use all the terms in the log posterior function
instead of taking a sampled posterior function. We stop running gradient
descent when the parameter updates drop below a threshold of € = 107%, a
condition we check every 100 gradient steps. Priors for a and 6 were chosen
to be N (0,100) to keep it flat and uninformative. We chose the priors for
7 and 7* to be N(0.5,100) and N(—0.5,100) to reflect the prior belief of
polarization, however these are also quite uninformative given the large vari-
ance. We fix 72 at 10, 02 at 1 and ¢? at 10. We choose p = 2, following Zhu
et al. (2023). The choice of two dimensions aligns with DW-NOMINATE, a
widely recognized model of congressional ideology. This model demonstrates
that two dimensions can account for up to 90% of the variation in roll call
voting (McCarty et al., 2016).

For the step size A\, we started by conducting a search to identify the
optimal initial step size for our model by observing the loss curves for various
candidates. The goal was to identify a step size that avoided slow convergence
and prevented the loss from exploding. Once the best initial step size was

determined, we proceeded with training the model. During training, if the

12



loss plateaued, we halved the step size to promote further reduction in the
loss. After one such adjustment, further halving did not yield significant
improvements, so we concluded the training process at that point. To choose
Na, We take a as an example. We start by selecting an initial guess for n, such
that log m(a*) —log w(a* + 1, ) is neither too large nor too small, aiming for a
value between 10 and 50. Here, log w(*) denotes the log probability density
function 7 evaluated at the mode with « set to be o*, while log w(a* + 1,)
represents the same function evaluated at the mode with « set to be a* +1,,.
This range ensures that the perturbation is sizable enough to influence the
parameters meaningfully but not so large that they deviate excessively from
the optimum. In our case, we opted for a uniform 7, for all parameters for

which we wanted to estimate variance, and this approach worked well.

4 Algorithm Comparison and Analysis

Figure 3 illustrates the convergence times for SGD-based algorithms executed
on a CPU and an Nvidia GPU A40, alongside the convergence times for the
MCMC algorithm. The x-axis denotes the number of nodes in the network,
while the y-axis represents the convergence time in minutes. The blue curve
corresponds to the convergence times of the SGD algorithm when executed on
a CPU, the red curve represents the convergence times of the same algorithm
when executed on a GPU, and the green curve shows the convergence times

for the MCMC algorithm. The SGD algorithm provides approximately a 30-

13



Log-Scale Run-Time Comparison

107 4

=
o

Run Time (Minutes)

-h

R

‘___—.r
10! —
e
-
-
1--- &~
’,‘,—" —&— SGD CPU Run Time
T —&- SGD GPU Run Time
-k~
R —&- MCMC Run Time
; ; T T T . T
200 400 600 800 1000 1200 1400

Number of Nodes

Figure 3: Comparison of Convergence Times for SGD (CPU and GPU) and
MCMC Algorithms Across Different Network Sizes.

fold reduction in convergence time compared to the MCMC algorithm. Addi-
tionally, parallelization further improves the scalability of the SGD method:
executing the SGD algorithm on the Nvidia GPU A40 yields substantial ef-
ficiency gains, resulting in around a 20-fold reduction in convergence time
compared to its execution on the CPU. Note that the reported convergence
times for the SGD algorithm include both the point estimation step and the

variance estimation step.

4.1 Impact of Hyperparameters on Convergence Time

It is important to understand how hyperparameters, such as step size (1)),
affect the convergence speed. Choosing the correct step size (A) and momen-

tum in SGD is crucial, as it significantly affects the convergence behavior.

14



Specifically, if the step size is too large, the algorithm may diverge, causing
the loss to explode. If the step size is too small, the algorithm will converge
very slowly. To address this, we fixed the momentum parameter at 0.99 and
focused on tuning the step size. For the step size A\, we started by conducting
an empirical search to identify an optimal initial value. We observed the loss
curves for various step size candidates, aiming to find a step size that avoids
both slow convergence and loss explosion. After determining the best initial
step size, we began training the model. During training, if we noticed that
the loss plateaued, we halved the step size. This halving process was repeated
until the log posterior function convergences. Once the correct magnitude is
established, fine-tuning the step size only results in marginal gains in conver-
gence speed. For the computational time plot presented above, we used the
step size of 0.001 for all latent position parameters and 0.001 for all global
parameters, while using the sign of the gradient (41/-1) for updating the

global parameters instead of the actual gradient values.

4.2 Computational Complexity and Factors Contribut-
ing to Speedup

Each iteration of the proposed SGD-based algorithm has a computational
complexity of O(T x N?) for both time and space, where T is the number
of time points in the network time-series and N represents the number of

nodes in each network. This complexity comes from the requirement to

15



process all node pairs across each time point. Each iteration of the MCMC
algorithm also has the same computational complexity of O(T x N?). The
significant speedup of the SGD-based algorithm predominantly stems from

two key factors:

1. Parallelization on GPU: The ability to leverage the parallel process-
ing capabilities of GPUs significantly reduces the time spent per iter-
ation. This factor provides around a 20-fold increase in performance

compared to the CPU execution.

2. Fewer Iterations to Converge: The SGD-based algorithm requires
far fewer iterations to achieve convergence compared to the MCMC
algorithm. This results in approximately a 30-fold increase in perfor-

mance.

16



5 Varying percentage leaving

a=1 0=2 7“‘ =0.25 =05
Var(a) ) Var(0) e Var 7”) b Vzu'(",f”)
( ) 0.005 (<0.001) 1.98 (0.005) 0.005 (<0.001) ( ) ) 050 (0 025) (0.008)
( ) 0.005 (<0.001) 1.98 (0.007) 0.005 (<0.001) ( ) ) 0.50 (0.030) (0.008)
Turnover=20% 0.94 (0.006) 0.005 (<0.001) 1.98 (0.007) 0.006 (<0.001) 0.25 (0.041) ) 0.49 (0.034) (0.008)
Turnover=30% 0.94 (0.008) 0.005 (<0.001) 1.98 (0.005) 0.007 (<0.001) 0.24 (0.044) 0. ) 0.50 (0.034) (0.010)
Turnover=40% 0.94 (0.007) 0.005 (<0.001) 1.98 (0.008) 0.008 (<0.001) 0.26 (0.042) 0.036 (0.008) 0.48 (0.029) 0 ()50 (0.009)
Turnover=50% 0.94 (0.008) 0.005 (<0.001) 1.98 (0.008) 0.009 (<0.001) 0.25 (0.042) ) 0.49 (0.031) (0.010)
(0.007) ( ) (0.010) ) (0.036) ) (0.027) (0.009)
(0.007) ( ) (0.014) ) (0.030) ) (0.025) (0.011)
(0.005) ( ) (0.024) ) (0.056) ) (0.038) (0.012)

Turnover=0%  0.94
Turnover=10% 0.94

0.004
0.006

0.24
0.24

0.025
0.032

Turnover=60% 0.94 (0.007) 0.005 (<0.001) 1.98 (0.010) 0.011 (<0.001) 0.27 (0.036 0.48 (0.027 0.009
Turnover=70% 0.94
Turnover=80% 0.95

0 031
0.033
0.034

0.007
0.005

0.005
0.005

<0.001
<0.001

1.98
1.99

0.014
0.024

0.015
0.022

<0.001
<0.001

0.26
0.26

0.030
0.056

0.48
0.49

0.025
0.038

0.011
012

Table 2: Posterior-based mean (empirical standard deviation) for point es-
timation and variance estimation for parameters «, 6, v, and ~°, based on
n = 500 nodes with T" = 10 time points. The table presents the robustness of
the estimation method across varying proportions of node turnover, ranging
from 0% to 80%. Despite increasing turnover, the point estimates remain
consistent. The variance of the estimates for §, 7%, and 7 increases due to
the reduction in sample size, which is also captured by the variance estimates
appropriately.

Table 2 presents the posterior-based mean (empirical standard deviation) for
point estimation and variance estimation, based on a CLSNA model with
n = 500 nodes, similar to the size of a US Congress, across varying propor-
tions of nodes entering and leaving the network to demonstrate the robustness
of the method. Similar to Congress, at each time step, a random subset of
nodes are dropped out, while an equal number of new nodes are randomly
initialized according to the model’s prior distribution. The results indicate
that both the point estimates and variance estimates are robust across dif-
ferent turnover levels. As the turnover proportion increases, the variance of
the estimates for 8, 7%, and 7 also increases, which can be attributed to the

smaller sample sizes available for estimating these parameters. This shows

17



the method’s capability to provide robust point estimates with varying pro-
portions of nodes entering and leaving while effectively capturing the increase

in uncertainty as the turnover proportion rises.

References

McCarty, N., Poole, K. T. and Rosenthal, H. (2016) Polarized America: The

dance of ideology and unequal riches. mit Press.

Zhu, X., Caliskan, C., Christenson, D. P., Spiliopoulos, K., Walker, D. and
Kolaczyk, E. D. (2023) Disentangling positive and negative partisanship in
social media interactions using a coevolving latent space network with at-
tractors model. Journal of the Royal Statistical Society Series A: Statistics

in Society. URL: https://doi.org/10.1093/jrsssa/qnad008. Qnad008.

18



