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This supplementary document is organized as follows. In Section 1 we

present the proofs of the theoretical results that appear in the main body

of the paper. In Section 2 we present some additional statistical tests and

diagnostics to back up the validity of the numerical results reported in the

main body of the paper. In Section 3, we provide implementation details

for the algorithm. In Section 4, we compare computational times among

MCMC and the newly proposed SGD-based algorithm (in both CPU and

GPU settings). We also comment upon the impact of hyper-parameters

choices on convergence times. In Section 5 we present a simulation study to

illustrate the algorithm’s robustness when nodes exit the network at different

turnaround levels.

1 Some Useful Results of Multivariate Nor-

mal Distribution

Our variance estimation method exploits the properties of the conditional dis-

tribution of a multivariate Gaussian distribution. Let x follow a multivariate

normal distribution x ∼ N (µ,Σ), and hence the conditional distribution of

a subset vector x1, given its complement vector x2, is also a multivariate

normal distribution x1|x2 ∼ N (µ1|2,Σ1|2) with the conditional mean and co-

variance given by µ1|2 = µ1 +Σ12Σ
−1
22 (x2 − µ2) and Σ1|2 = Σ11 − Σ12Σ

−1
22 Σ21,

respectively. The block-wise mean and covariance matrices are defined as

µ = [ µ1
µ2 ] and Σ =

[
Σ11 Σ12
Σ21 Σ22

]
.
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More specifically, the covariance of the conditional distribution Cov(x1|x2)

is a constant as a function of x2, indicating that the shape of the conditional

distribution is independent of the specific value of x2. Additionally, writ-

ing p(x1|x2) as the p.d.f of the conditional distribution of x1|x2, the mean

µ1|2 = µ1+Σ12Σ
−1
22 (x2−µ2) is the median, and mode of the distribution. The

maximum of the p.d.f. function p(x1 = µ1|2|x2) is a constant as a function of

x2.

Therefore, we can recover the shape of the marginal distribution of x2

from the joint distribution by varying x2 and following the line x1 = µ1|2.

Theorem 1.1. Given the multivariate Gaussian distribution setting pre-

sented above, write p(x1, x2) as the p.d.f of the joint distribution of x1, x2.

p(x2) as the p.d.f of the marginal distribution of x2. Then, we have p(x2) ∝

p(x1 = µ1|2, x2).

In particular, the marginal distribution is proportional to the joint dis-

tribution evaluated on the curve of the conditional mean of x1 given x2.

Proof. Let us explicitly state the conditional mean and covariance matrix

for our given multivariate Gaussian distribution. The conditional mean of x1

given x2, denoted µ1|2, is:

µ1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2).

Additionally, the conditional covariance matrix, denoted Σ1|2, is described
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as:

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21.

The joint distribution, p(x1, x2), for the multivariate Gaussian is:

p(x1, x2) =
1

(2π)
k
2 |Σ| 12

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

The conditional distributions p(x1|x2) is:

p(x1|x2) =
1

(2π)
n
2 |Σ1|2|

1
2

exp

(
−1

2
(x1 − µ1|2)

TΣ−1
1|2(x1 − µ1|2)

)
.

By the definition of conditional probabilities, we have:

p(x2) =
p(x1, x2)

p(x1|x2)
.

Inserting x1 = µ1|2 into this relation, we get:

p(x2) =
p(µ1|2, x2)

p(µ1|2|x2)
.

Since p(µ1|2|x2) =
1

(2π)
n
2 |Σ1|2|

1
2
and Σ1|2 is constant as a function of x2, we

get that

p(x2) = Cp(µ1|2, x2).

where C = (2π)
n
2 |Σ11 − Σ12Σ

−1
22 Σ21|

1
2 , a constant as a function of x2.

Theorem 1.1 provides an expression for the shape of the marginal distribu-
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tion from the joint distribution, when the joint distribution is a multivariate

normal distribution.

Next, we proceed with an important result demonstrating that for a nor-

mal distribution the ideas of Theorem 1.1 yield a formula for the variance

of x2 that we can then be turned into a practical SGD-based algorithm for

uncertainty quantification. In particular, recall that in a univariate normal

distribution, two key parameters - the mean and variance - describe the dis-

tribution fully. By considering two distinct points from the distribution, we

can deduce these parameters.

Corollary 1.1.1. Consider the multivariate Gaussian distribution setting

presented above, and let x2 be scalar. Then, for some fixed x̃2 ̸= µ2,

Var(x2) =
1

2

(µ2 − x̃2)
2

log p(x1 = µ1, x2 = µ2)− log p(x1 = µ1|2, x2 = x̃2)
(1)

Proof. Recall that the p.d.f of a univariate Gaussian distribution x2 ∼ N (µ2,Var(x2))

is given by:

p(x2) =
1√

2πVar(x2)
exp

(
−(x2 − µ2)

2

2Var(x2)

)
. (2)

Taking the logarithm, we obtain:

log p(x2) = −1

2
log(2πVar(x2))−

(x2 − µ2)
2

2Var(x2)
. (3)

From Theorem 1.1, we deduce that log p(x2) and log p(x1 = µ1|2, x2) differ

by a constant since p(x2) ∝ p(x1 = µ1|2, x2). Considering two distinct points,
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x2 = µ2 and x2 = x̃2:

For x2 = µ2:

log p(x2 = µ2) = −1

2
log(2πVar(x2)). (4)

For x2 = x̃2:

log p(x2 = x̃2) = −1

2
log(2πVar(x2))−

(x̃2 − µ2)
2

2Var(x2)
. (5)

Define the difference in these logarithmic probabilities as:

∆ = log p(x1 = µ1, x2 = µ2)− log p(x1 = µ1|2, x2 = x̃2). (6)

Using the above, we get:

∆ =
(µ2 − x̃2)

2

2Var(x2)
. (7)

Rearranging gives:

Var(x2) =
(µ2 − x̃2)

2

2(log p(x1 = µ1, x2 = µ2)− log p(x1 = µ1|2, x2 = x̃2))
, (8)

completing the proof of the corollary.

Beyond just the variance represented by the diagonal elements of the

covariance matrix, there’s also a formula for the off-diagonal elements. This
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allows us to reconstruct a single column of the covariance matrix.

Corollary 1.1.2. Consider the multivariate Gaussian distribution setting

presented above. Then, for some fixed x̃2 ̸= µ2,

Σ12 =
Σ22

(x̃2 − µ2)
(µ1|2 − µ1),

where µ1|2 denotes the conditional mean of x1 given x2 = x̃2.

The methodology established for a generic normal distribution p(x1, x2) is

adapted to estimate variance in the posterior distribution π(·|Y ), effectively

applying the same theoretical concepts to the Bayesian analysis under a

Laplace approximation.

2 Supplementary Results in X Data Analysis

2.1 BIC values

In our analysis, we utilized the Bayesian Information Criterion (BIC) to

determine the best change-point among the competing models. For the X

platform dataset, we evaluated the BIC values for potential single change-

points from 2012 onwards, as presented in Table below. The model suggesting

a change-point in 2012 yielded the lowest BIC value.
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2012 2013 2014 2015 2016 2017 2018 2019
BIC 220138 220163 220201 220189 220212 220203 220234 220224

Table 1: BIC values for competing models with different change-point for
the X platform data.

2.2 Diagnostics

Note that the variance estimation algorithm is similar to a quadratic approx-

imation to the log-posterior density. We performed diagnostics to evaluate

the assumption that the log likelihood function can be approximated by a

quadratic function in a small neighborhood centered around the mode.

2.2.1 Normality test

We rewrite equation (1) as follows:

max
θ1=θ∗1−η

log π(Z, θ|Y ) = max
θ1=θ∗1

log π(Z, θ|Y )− 1

2

η2

̂Var(θ1|Y )
, (9)

and if our assumptions are correct, then ̂Var(θ1|Y ) should be a constant no

matter the choice of η. We vary η to obtain a plot of maxθ1=θ∗1−η log π(Z, θ|Y )

as a function of η to test whether this assumption is valid. If this assumption

holds, maxθ1=θ∗1−η log π(Z, θ|Y ) should be approximately a quadratic function

as a function of η.

We choose θ1 to be γw
R , and set η to be -0.03, -0.02, -0.01, 0.01, 0.02, 0.03.

In Figure 1 we plot maxθ1=θ∗1−η log π(Z, θ|Y ) as a function of η (left) and η2

(right). We can see that maxθ1=θ∗1−η log π(Z, θ|Y ) is approximately quadratic
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as a function of η and linear as a function of η2. The diagnostic plot does

not show evidence of violating the underlying assumptions of the variance

estimation method.

Figure 1: We choose θ1 to be γw
R , and set η to be -0.03, -0.02, -0.01, 0.01,

0.02, 0.03. We plot maxθ1=θ∗1−η log π(Z, θ|Y ) as a function of η (left) and η2

(right).

2.2.2 Linearity test

From Theorem 1.1, we see that the conditional mean of X2:n|X1 is linear as

a function of X1 under the Gaussian assumption, i.e.,

µ(X2:n|X1 = µ1 + η) = µ2:n + Σ21Σ
−1
11 η. (10)

We vary η to obtain the slope
µ(Xj |X1=µ1+η)−µj

η
for each Xj with differ-

ent η to test whether this assumption is valid. If this assumption holds,
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Figure 2: We choose θ1 to be γw
R , and set η to be -0.03, -0.02, -0.01, 0.01,

0.02, 0.03. We calculate
µ(Xj |X1=µ1+η)−µj

η
for each latent position parameters

under each η. The latent position parameters are ordered by the mean of its
slopes and plot the mean maximum and minimum of its slopes (left) and the
the slopes of 95% of the latent position parameters after removing the tail
5% that have a very large or very small slopes.

µ(Xj |X1=µ1+η)−µj

η
should be a constant regardless the choice of η for each Xj.

We use the results of the previous test, set θ1 to be γ
w
R , and η to take values

in the set {−0.03,−0.02,−0.01, 0.01, 0.02, 0.03}. We calculate
µ(Xj |X1=µ1+η)−µj

η

for each latent position parameters and each η. In Figure 2 we order the latent

position parameters by the mean of its slopes and plot the mean maximum

and minimum of its slopes (left) and the the slopes of 95% of the latent

position parameters after removing the tail 5% that have a very large or

very small slopes. We can see that the slopes, or the correlated changes for

each latent position parameters when we change γw
R are close under different

choice of η. Therefore the diagnostic plot does not show substantial evidence
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of violating the underlying assumptions of the variance estimation method.

3 Implementation Details

We use gradient descent with momentum and choose different learning hy-

perparameters for the latent position parameters and the global parameters.

With gradient descent, we use all the terms in the log posterior function

instead of taking a sampled posterior function. We stop running gradient

descent when the parameter updates drop below a threshold of ϵ = 10−4, a

condition we check every 100 gradient steps. Priors for α and δ were chosen

to be N (0, 100) to keep it flat and uninformative. We chose the priors for

γw and γb to be N (0.5, 100) and N (−0.5, 100) to reflect the prior belief of

polarization, however these are also quite uninformative given the large vari-

ance. We fix τ 2 at 10, σ2 at 1 and ϕ2 at 10. We choose p = 2, following Zhu

et al. (2023). The choice of two dimensions aligns with DW-NOMINATE, a

widely recognized model of congressional ideology. This model demonstrates

that two dimensions can account for up to 90% of the variation in roll call

voting (McCarty et al., 2016).

For the step size λ, we started by conducting a search to identify the

optimal initial step size for our model by observing the loss curves for various

candidates. The goal was to identify a step size that avoided slow convergence

and prevented the loss from exploding. Once the best initial step size was

determined, we proceeded with training the model. During training, if the
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loss plateaued, we halved the step size to promote further reduction in the

loss. After one such adjustment, further halving did not yield significant

improvements, so we concluded the training process at that point. To choose

ηα, we take α as an example. We start by selecting an initial guess for ηα such

that log π(α∗)− log π(α∗+ηα) is neither too large nor too small, aiming for a

value between 10 and 50. Here, log π(α∗) denotes the log probability density

function π evaluated at the mode with α set to be α∗, while log π(α∗ + ηα)

represents the same function evaluated at the mode with α set to be α∗+ηα.

This range ensures that the perturbation is sizable enough to influence the

parameters meaningfully but not so large that they deviate excessively from

the optimum. In our case, we opted for a uniform ηα for all parameters for

which we wanted to estimate variance, and this approach worked well.

4 Algorithm Comparison and Analysis

Figure 3 illustrates the convergence times for SGD-based algorithms executed

on a CPU and an Nvidia GPU A40, alongside the convergence times for the

MCMC algorithm. The x-axis denotes the number of nodes in the network,

while the y-axis represents the convergence time in minutes. The blue curve

corresponds to the convergence times of the SGD algorithm when executed on

a CPU, the red curve represents the convergence times of the same algorithm

when executed on a GPU, and the green curve shows the convergence times

for the MCMC algorithm. The SGD algorithm provides approximately a 30-
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Figure 3: Comparison of Convergence Times for SGD (CPU and GPU) and
MCMC Algorithms Across Different Network Sizes.

fold reduction in convergence time compared to the MCMC algorithm. Addi-

tionally, parallelization further improves the scalability of the SGD method:

executing the SGD algorithm on the Nvidia GPU A40 yields substantial ef-

ficiency gains, resulting in around a 20-fold reduction in convergence time

compared to its execution on the CPU. Note that the reported convergence

times for the SGD algorithm include both the point estimation step and the

variance estimation step.

4.1 Impact of Hyperparameters on Convergence Time

It is important to understand how hyperparameters, such as step size (λ),

affect the convergence speed. Choosing the correct step size (λ) and momen-

tum in SGD is crucial, as it significantly affects the convergence behavior.
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Specifically, if the step size is too large, the algorithm may diverge, causing

the loss to explode. If the step size is too small, the algorithm will converge

very slowly. To address this, we fixed the momentum parameter at 0.99 and

focused on tuning the step size. For the step size λ, we started by conducting

an empirical search to identify an optimal initial value. We observed the loss

curves for various step size candidates, aiming to find a step size that avoids

both slow convergence and loss explosion. After determining the best initial

step size, we began training the model. During training, if we noticed that

the loss plateaued, we halved the step size. This halving process was repeated

until the log posterior function convergences. Once the correct magnitude is

established, fine-tuning the step size only results in marginal gains in conver-

gence speed. For the computational time plot presented above, we used the

step size of 0.001 for all latent position parameters and 0.001 for all global

parameters, while using the sign of the gradient (+1/-1) for updating the

global parameters instead of the actual gradient values.

4.2 Computational Complexity and Factors Contribut-

ing to Speedup

Each iteration of the proposed SGD-based algorithm has a computational

complexity of O(T × N2) for both time and space, where T is the number

of time points in the network time-series and N represents the number of

nodes in each network. This complexity comes from the requirement to

15



process all node pairs across each time point. Each iteration of the MCMC

algorithm also has the same computational complexity of O(T × N2). The

significant speedup of the SGD-based algorithm predominantly stems from

two key factors:

1. Parallelization on GPU: The ability to leverage the parallel process-

ing capabilities of GPUs significantly reduces the time spent per iter-

ation. This factor provides around a 20-fold increase in performance

compared to the CPU execution.

2. Fewer Iterations to Converge: The SGD-based algorithm requires

far fewer iterations to achieve convergence compared to the MCMC

algorithm. This results in approximately a 30-fold increase in perfor-

mance.
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5 Varying percentage leaving

α = 1 δ = 2 γw = 0.25 γb = 0.5

α̂ V̂ar(α) δ̂ V̂ar(δ) γ̂w V̂ar(γw) γ̂b V̂ar(γb)
Turnover=0% 0.94 (0.004) 0.005 (<0.001) 1.98 (0.005) 0.005 (<0.001) 0.24 (0.025) 0.028 (0.007) 0.50 (0.025) 0.026 (0.008)
Turnover=10% 0.94 (0.006) 0.005 (<0.001) 1.98 (0.007) 0.005 (<0.001) 0.24 (0.032) 0.030 (0.007) 0.50 (0.030) 0.027 (0.008)
Turnover=20% 0.94 (0.006) 0.005 (<0.001) 1.98 (0.007) 0.006 (<0.001) 0.25 (0.041) 0.032 (0.007) 0.49 (0.034) 0.028 (0.008)
Turnover=30% 0.94 (0.008) 0.005 (<0.001) 1.98 (0.005) 0.007 (<0.001) 0.24 (0.044) 0.034 (0.008) 0.50 (0.034) 0.030 (0.010)
Turnover=40% 0.94 (0.007) 0.005 (<0.001) 1.98 (0.008) 0.008 (<0.001) 0.26 (0.042) 0.036 (0.008) 0.48 (0.029) 0.030 (0.009)
Turnover=50% 0.94 (0.008) 0.005 (<0.001) 1.98 (0.008) 0.009 (<0.001) 0.25 (0.042) 0.038 (0.008) 0.49 (0.031) 0.032 (0.010)
Turnover=60% 0.94 (0.007) 0.005 (<0.001) 1.98 (0.010) 0.011 (<0.001) 0.27 (0.036) 0.039 (0.008) 0.48 (0.027) 0.031 (0.009)
Turnover=70% 0.94 (0.007) 0.005 (<0.001) 1.98 (0.014) 0.015 (<0.001) 0.26 (0.030) 0.043 (0.008) 0.48 (0.025) 0.033 (0.011)
Turnover=80% 0.95 (0.005) 0.005 (<0.001) 1.99 (0.024) 0.022 (<0.001) 0.26 (0.056) 0.049 (0.008) 0.49 (0.038) 0.034 (0.012)

Table 2: Posterior-based mean (empirical standard deviation) for point es-
timation and variance estimation for parameters α, δ, γw, and γb, based on
n = 500 nodes with T = 10 time points. The table presents the robustness of
the estimation method across varying proportions of node turnover, ranging
from 0% to 80%. Despite increasing turnover, the point estimates remain
consistent. The variance of the estimates for δ, γw, and γb increases due to
the reduction in sample size, which is also captured by the variance estimates
appropriately.

Table 2 presents the posterior-based mean (empirical standard deviation) for

point estimation and variance estimation, based on a CLSNA model with

n = 500 nodes, similar to the size of a US Congress, across varying propor-

tions of nodes entering and leaving the network to demonstrate the robustness

of the method. Similar to Congress, at each time step, a random subset of

nodes are dropped out, while an equal number of new nodes are randomly

initialized according to the model’s prior distribution. The results indicate

that both the point estimates and variance estimates are robust across dif-

ferent turnover levels. As the turnover proportion increases, the variance of

the estimates for δ, γw, and γb also increases, which can be attributed to the

smaller sample sizes available for estimating these parameters. This shows
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the method’s capability to provide robust point estimates with varying pro-

portions of nodes entering and leaving while effectively capturing the increase

in uncertainty as the turnover proportion rises.
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